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ABSTRACT

While considerable advances have been made in the tech-

nology of software development, costs continue to rise.

Research has shown that incomplete, ambiguous or inconsist-

ent requirements specifications are a frequent cause of cost

escalation and poor quality of the end product. This thesis

reviews the problems in this area and their causes and

examines a number of current systems and methodologies

designed to better state the users' requirements. Tech-

niques developed by the US Naval Research Laboratory for

generating requirements specifications for embedded computer

systems are selected for detailed examination and the

results of a limited case study in the application of these

techniques to a Navy weapon system are presented. These

indicate that use of the techniques need not require a high

degree of expertise in computer science and that they are

adaptable to new systems.
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DISCLAIMER

The language in this thesis conforms to English rather

than American usage. In particular, spelling is based on

the Oxford English Dictionary.
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I. INTRODUCTION

The high cost of computer software is a well accepted

and documented fact. Due largely to reductions in hardware

costs with advancing technology, the software component of

overall systems cost has increased from around 20% in the

1960's to something more than 80% today. Within the soft-

ware component, the cost of maintenance--changes to correct

errors and to accommodate new requirements--has risen more

quickly than the cost of new software development. Figure

1.1 illustrates the trends of these costs.

A. EMBEDDED SYSTEMS

This study concentrates on software for embedded

computer systems. The term embedded refers to applications

in which the computer is an element of a larger system.

Initially, such systems were predominantly military with

weapon control being the primary orientation. More

recently, however, embedded computers have been used in

machinery control and surveillance, data logging and other

widely diverse applications.

Embedded computer system software is one of the three

major software application areas. The other two are scient-

ific computing and business software--commonly referred to

as Automatic Data Processing (ADP). On a world wide basis,

ADP consumes the greater proportion of the software dollar
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but within the Department of Defense (DOD), ADP only

accounts for 18% of the $4.5 billion software budget with

embedded system software taking 56% (11.

1. Characteristics of E Syse Software

Software for embedded computer systems has a

number of common characteristics which serve to distinguish

it from ADP or scientific software (21,22].

a. Size: programs are usually large in comparison to

ADP programs, typically 100,000 + lines of code or

400 + modules.

b. Complexity: programs must control a variety of

functions and interface with specialized hardware.

c. Susceptability to Modification: through the 10 to

15 year life of the associated hardware system,

programs will be modified to accommodate hardware

changes, new operating procedures and changes to

tactical doctrine.

d. Real Time Operation: the programs must respond to

external events as they occur.

The latter characteristic is probably the most

critical in making embedded system s-ftware 'special'. The

requirement to respond to external events means that flow of

control through a program is no longer a function only of

its input data and internal structure but also depends on

the timing relationships of the inputs. This factor

considerably increases the difficulty of design, maintenance

11



and testing. For example, Department of Defense costs for

maintenance of embedded computer system software now exceed

the amounts being expended on new development.

B. SOFTWARE ENGINEERING

During the last fifteen years, considerable advances

have been made in the technology of software development.

The emerging discipline of Software Engineering originated

in the application of traditional engineering tools and

methods to what had previously been treated as an art form.

Some examples of the new techniques are the introduction of

structured programming, greater use of high level languages

and better progrim development tools such as editors,

compilers and simulators.

While these techniques have resulted in significant

improvements and cost reductions, a number of authorities

have pointed out that over-concentration on the methods and

tools of implementation rather than on the design to be

implemented must result in diminishing returns for effort.

Speaking of the parallel with engineering design and

drafting techniques, Hoare said:

"Perhaps our first faltering steps towards a discipline
of Software Engineering are rather analogous. They are
based on the discovery that a program can be designed
before it is written, just as a table can be designed
before it is constructed.

"It is possible to use the most refined and accurate
methods to implement the most inadequate designs.
There is nothing wrong with the drawing office
procedures used to construct ships which will hardly
stay afloat . ."[3

12



C. REQUIREMENTS SPECIFICATION

Following this and similar calls, much work has been

done in recent years on improving the early stages of the

software development process--those stages which cover

analysis of the requirements, preliminary and detailed

design. Although new techniques have been developed and our

understanding of the process improved, evidence exists that

the major problems of software development still lie in

these areas, particularly in the requirements analysis

stage.

In a 1981 survey of 300 leading computer professionals,

Thayer concluded that the problem of requirement specificat-

ions being frequently incomplete, ambiguous, inconsistent or

unmeasurable was seen as the most critical of 20 major

issues in software engineering project management (4]. A

less formal survey [5] found that, on average, the percent-

age of rewriting of system specificaL..ons required during

software development ranged from 15% for broad specificat-

ions to 37% for fully detailed specifications.

The cost of this problem is illustrated by a study of

software errors in a large project by Boehm [6]. 64% of the

errors encountered were categorised as design errors in that

their correction involved changing the detailed design spec-

ification. Further, although most of the coding errors were

discovered during initial test and integration 70% of the

design errors were not discovered until acceptance testing

13



or later and thus had a disproportionate effect on both cost

and schedule.

D. SCOPE

This study is directed towards a methodology for the

development of requirements specifications for embedded

systems software. The methodology presented is discussed in

relation to the interaction between the requirements phase

and other phases of the software development process.

E. ASSUMPTIONS

The reader is assumed to have a general understanding

of the software development process.

F. ORGANIZATION OF THE STUDY

Chapter II presents background material on the

requirements specification process, the design process and

their relation to the software life cycle. This is followed

in Chapter III with an overview of a number of specification

techniques in current use.

Chapter IV discusses in some detail, a specific

methodology developed at the US Naval Research Laboratory

(NRL) and which has been applied, as part of this study, to

the development of specifications for a real-world system.

Chapter V provides the necessary background on the subject

system and reports the results. Finally, conclusions and

recommendations are given in Chapter VI.
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Ii. BACKGROUND

A. THE SOFTWARE LIFE CYCLE

The concept of a software life cycle is a well accepted

one. While there are many variants on this theme, Freeman

(7] defines a five stage cycle which is representative:

a. Needs Analysis: recognition of a need by the end-

user and the generation of system outlines and

general requirements which will satisfy the need.

b. Specification: analysis of the need to generate

specifications of system functions, objectives and

constraints. May be combined with needs analysis.

c. Architectural Design: determination of overall

system structure -- a 'top level' design which

includes basic system relationships, hardware/

software tradeoffs and major data representations.

d. Detailed Design: the fleshing out of the architec-

tural design to include details of algorithms and

data structures, lower level modularization

decisions and precise interface specifications.

e. Implementation: coding, testing, integration and

delivery.

f. Maintenance: all post-delivery activities

including rectification of errors, modification of

existing functions and addition of new functions.

15



This study concentrates on the first two stages but it

is not possible to ignore the remainder. As Freeman points

out, the stages characterize the dominant activity at each

point but there is considerable interaction between phases.

For example, during maintenance, the addition of a new

system function will encompass all of the stages and may be

regarded as a microcosm of the entire life cycle.

B. INTERACTION BETWEEN SPECIFICATION AND DESIGN PHASES

There has traditionally been much interaction between

the first three stages with Needs Analysis, Specification

and Architectural Design frequently forming an iterative

sequence as the design is refined. In an ideal world, this

would not be necessary. The specifications would be clearly

and unambiguously defined and would accurately reflect the

user's requirements so that the design could proceed direct-

ly. Such a situation does not appear to be generally att-

ainable at present.

As Mc Henry and Walston £8] have pointed out, there are

two primary reasons for this interaction. First, since

design may be regarded as simply a restatement of one's

understanding of the requirements at the next level of

detail, the resulting additional scrutiny tends to expose

errors and ambiguities in the original requirements specif-

ications. Second, the knowledge gained in the system

analysis leading to the requirements is essential in eval-

uating design alternatives.
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Problems which arise from this interaction tend to be a

result of the organisational structures involved in the

development process. For a closely knit organization

carrying on in-house development--for example, an ADP

department developing software tools for internal use--there

is no real penalty involved in the iterative process and

there is a liklehood that a superior final design will

result.

Where the users, the systems analysts and the software

developers are in an arms-length relationship, as is

typically the case with Defense procurements, three

principal problems arise. First, the contractual relation-

ship between analyst and developer may preclude influence of

the knowledge gained in analysis on design tradeoffs.

Second, the uncovering of errors and ambiguities in the

requirements may require contract changes with consequent

cost escalation. Third, because the developer is remote

from the user, the probability of identifying problems with

the user requirements, as opposed to the technical require-

ments, of the specification is diminished.

Mc Henry and Walston discuss the first two of these

problems and conclude that the only way to avoid them is to

employ procurement strategies which provide for appropriate

interaction between specification and design. Those they

suggest rely on contractor involvement in the analysis and

specification phases as part of the contract covering

17



architectural design. When applicable such strategies

offer advantages. In many cases however--such as when a

competitive procurement is desired for design and

development--requirements specifications must be developed

in-house, independently of the contractor.

The third problem is less tractable still. Misunder-

standings of user needs which are not resolved during the

needs analysis and specification phases will tend to persist

through to delivery since the user's involvement in the

later stages diminishes rapidly. There appears to be no

general solution to this problem, other than to develop

specification methods which assist in validation of the uset

requirements.

C. PROBLEMS IN GENERATING SPECIFICATIONS

Distaso [91, in a 1980 survey of software management

practices, concluded that obtaining satisfactory software

requirements remains management's most serious challenge in

bringing order to the software development process. He

considered the following to be among the key elements of the

problem

a. Communications barriers exist between the users,

hardware designers and software designers of

typical systems. The widespread and growing

penetration of computer technology into other

fields makes it impracticable for the average

18



software designer to develop familiarity with all

the potential application areas. Similarly, the

explosive growth of computer technology makes it

difficult for experts in other fields to keep up.

b. The user's perceived needs tend to change as the

system evolves. .nis occurs because software is

an abstract concept and it is extremely difficult

for users to generate precise requirements for a

product which they can neither 'see' nor fully

understand. As understanding progresses with

system definition, the initial needs are

progressively refined.

c. Scheduling difficulties, particularly with

embedded systems tend to impose additional

requirements changes during the specification

phase. Changes in other subsystems early in the

design stages have a major effect on system

control software, suggesting that specification

development should be delayed until the external

subsystem designs have stabilized. On the other

hand, the requirement for control software to

support integration of these same subsystems often

precludes such a delay.

D. AIMS OF A REQUIREMENTS SPECIFICATION

A software requirements specification should specify

what the system must do without placing unnecessary

19



constraints on how this is to be achieved. Yeh and Zave

(10] consider that part of the problem encounteLed in

developing requirements is a failure by some proposed

techniques to maintain adequate separation between

requirements and design. Apart from the contractual

difficulties mentioned above, such lack of separation may

tend to make it more difficult to respond to changing user

and interface requirements.

In addition to specifying what the system must do,

there are a number of other uses of the requirements

specification. Yeh and Zave list the following:

a. As a means of communication among users, analysts

and designers.

b. To support validation of the design.

c. To control the operations and evolution of the

system it specifies.

To these, Mullery 111 adds that it must allow the end-

user or customer to see that the resulting system will do

what they want and Heninger [12] that it should record

forethought about the life cycle of the system, particularly

about likely changes.

From these uses, the authors have derived a number of

criteria for judging the goodness of a requirements

specification.

a. Understandability: since complexity is the major

issue in understanding modern software systems,

20



the specification must be able to decompose

complexity. This may be achieved by abstraction--

progressive elaboration of the system description

in increasing detail; or partitioning--definition

of the system in terms of sub-systems or modules.

b. Formality: to allow validation of the design and

to remove ambiguity, the specification should

avoid prose and present information in as formal a

way as possible. The use of formal requirements

allows for the possibility of automatic testing to

confirm that the specification and the resulting

design and implementation are logically

equivalent.

c. Completeness: to avoid unnecessary system

changes, the specification should be complete,

explicitly stating all assumptions and constraints

including non-functional constraints such as

reliability and cost.

d. Modifiability: in recognition that systems

undergo continuous evolution, the specification

should be easy to modify. Small changes in the

system environment should cause only correspond-

ingly small changes in the system. Balzer and

Goldman (131 suggest that this is best achieved by

using the partitioned approach to system

description and using a flexible structure which

21



will allow components to be easily removed or

added.

E. SUMMARY

Because of communications and contractual barriers,

there is frequently little interaction between end users and

software system designers in most Defense software

development projects. To ensure that errors and

misunderstandings at the requirements analysis stage are

identified prior to design, it is necessary that the

software requirements specification be sufficiently clear,

complete and unambiguous to allow the user to confirm that

the specified system will meet his needs. In addition, the

specification must meet other requirements: serving as a

tool for design validation, a means of communication between

analysts and implementors and a vehicle for controlling

change.
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III. EXISTING T AND METHODOLOGIES

This chapter provides an overview of some of the more

important techniques and methodologies reported in the

literature which have a direct application to the first two

stages of the software life cycle. These are provided to

form a background against which the techniques discussed in

the subsequent chapters may be judged.

Because the Software Requirements Engineering

Methodology (SREM) is one of the more mature and widely used

requirements developments systems and because it was

specifically designed for embedded applications, it is

discussed in detail and used as a vehicle to introduce

concepts. Other approaches are presented more briefly and

are contrasted with SREM where applicable.

A. SOFTWARE REQUIREMENTS ENGINEERING METHODOLOGY

SREM originated in the mid 1970's and was developed for

use in the Ballistic Missile Defense Program [141. The

following goals were set for its development:

a. To use a structured medium or language for the

statement of requirements. The properties of

testability, modularity, communicability, lack of

ambiguity and design freedom were to be addressed.

b. To use an integrated set of computer-aided tools

to automate the process and to assure consistency,

23



completeness and correctness of the requirements.

c. To provide a structured approach for developing

the requirements utilizing the language and

validating them using the tools.

1. Pro sng Representation

Traditional requirements documents have adopted

the functional hierarchy approach to the decomposition of

complexity. All processing is divided into functions, for

example: navigation, tracking, tactical display, threat

response, weapons designation. These are then broken down

into sub-functions in a standard hierarchy. This is the

format required by MIL-STD-1679 (15] which controls software

development for weapons systems for Department of Defense.

SREM uses a quite different approach based on

'messages' and 'processing paths'. A message is a data item

which crosses an interface of the system under considera-

tion. Weapon system examples range from the 'north crossing'

signal -- a single bit message indicating that a particular

radar beam has traversed true north, to complex streams

providing large quantities of data to other systems or

processors. Messages may be designated as input or output

depending on the direction in which they cross the inter-

face.

A path is the sequence of processing steps to

which an input message is subjected. It may be regarded as

a loop free directed graph with the input message or

24



stimulus at the root node, the processing steps represented

by the arcs and the terminal nodes representing the

response--either output messages or the alteration of stored

data.

This approach is intended to overcome a number of

disadvantages inherent in the function hierarchy:

difficulty in being able to trace the processing required by

input messages, difficulty in relating testable entities to

functions which may span several subsystems, and a tendency

to force the architectural design to comply with the same

hierarchy and, as a result, to incorporate the same

drawbacks [14].

Under SREM, the input message processing is

explicit and the design of the approach was based on

observations of testing of real-time software by measurement

of stimulus-response performance [16].. It seems to the

writer, however, that the third criticism is unjustified.

While a design influenced by the SREM approach may be

'better' than one influenced by the traditional breakdown,

there is no evidence that either method imposes more

influence on the designer.

2. RguireMe Networks

To reduce the number of paths for complex cases,

paths which originate from the same input message type are

integratcd into a network called a Requirements Network or

R-Net. The feature of the R-Net which provides path

25



reduction is to allow non terminal nodes to have either an

OR function (only one branch path selected), an AND function

(all branch paths selected) or a FOR EACH function (the

single branch path repeated a number of times). The OR and

FOR EACH nodes are controlled by the value of memory

variables which are the result of other processing. The AND

function is terminated by a re-join node which provides

synchronisation -- execution does not proceed until each AND

branch is complete.

The general nature of the R-Net is assured by the

fact that it provides constructs analogous to those of

Structured Programming. These constructs: sequential

enumeration, selection and iteration have been shown by Bohm

and Jacopini (17] to be sufficient to represent any process

which may be represented by a standard block or flow

diagram. In addition, since processing steps may be

replaced by sub-nets, a hierarchical approach may be taken

to allow hiding of detail not required for comprehension at

a given level.

An example R-Net is shown in Figure 3.1. Some of

the key features are discussed below. Processing commences

on receipt of a message at the input interface (other nets

may originate with an internally generated event). Since

the R-Net is for a given message type, more than one

instance of a particular net may exist at any one time. The
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arcs of the network represent execution paths and may be

either processing steps (ALPHA's) or sub-nets. In addition

to the control nodes discussed above, the network maycontain

validation points at which recording of certain data during

simulation may be specified for validation or testing.

3. Requirements S L (RSL)

RSL is a formally designed specification language

suitable for automated processing and analysis. It provides

a method to express the two dimensional graphical format of

the R-Nets as a one dimensional text stream suitable for

machine interpretation. The language is described fully in

(18] and is constructed around four primitive constructs:

element, attribute, relation and structure.

a. Elements are the objects manipulated by the

language and include ALPHA, R-NET and DATA (the

class of conceptual data items).

b. Attributes formalize important properties of

elements, for example a DATA element may have

attributes of UNITS, INITIALVALUE etc.

c. Relations are non-comutative and state the

association between two elements, eg: X_OUT .EQ.

X_IN + 1.

d. Structures specify the required processing steps

and may be attributed to R-Nets or sub-nets.

Figure 3.2 illustrates an RSL structure embodying

the the R-Net of Figure 3.1.
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met: netj
description:

{narrative description of function}
refers to:

(declarations of elements used in the r-net}
traced from:

{reference to originating requirement}
structure:

input interface: i-i
validation point: v-i
alpha: a-I
do

alpha: a-2
subnet: s-i

and
alpha: a-3
consider data: d-l
if (1 or 2)

alpha: a-4
or (3)

alpha: a-5
end

end
do

alpha: a-6
validation point: v-2
output interface: o-i

and
alpha: a-7
output interface: o-2

end
end.

Figure 3.2
RSL Structure for R-NET of Figure 3.1
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While the composition of the language from these

primitives is fixed, the language itself is extensible in

a similar manner to some programming languages such as Forth

New types of elements, attributes, relationships and

structures may be defined in terms of the primitives or

presently defined elements.

In the original SREM, the functions allocated to

the data processing sub-system and the associated perform-

ance requirements are documented as the Data Processing

Subsystem Performance Requirements (DPSPR). This document

is prepared by specialists in the application area and the

initial SREM phase consists of its translation into RSL.

Nam [19] describes a recent extension to RSL which reduces

the degree of computer proficiency required of the writer

and makes it feasible for at least part of the originating

requirements to be entered directly into the computer by the

applications specialist and translated by machine into RSL.

4. ComputerSupr

Computer support for RSL consists of two

components. The translator and the Abstract System Semantic

Model (ASSM). The primary function of the translator is to

extract the primitives in the RSL document and to map them

into corresponding entries in the ASSM. In addition to the

normal syntax checking, the translator provides consistency

checking and allows the controlled use of extensions.
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The ASSM is a centralised relational database

which provides an abstract model of the system described by

the RSL document. The entity, relation and attributes

primitives of RSL form the basic relational mapping.

Entities are represented as nodes connected by relations.

Attributes are connections which link entity nodes and nodes

representing the attribute value or range. The fourth RSL

primitive, the structure, is treated as a value which may be

attributed to an R-NET or SUB-NET entity.

5. Reguirements Engineering Valdaio inste (REVS)

REVS is a collection of computer based tools which

operate on the ASSM. While they are primarily aimed at the

goals of completeness, correctness and consistency, they

also aid in communication between customers, requirements

analysts and designers. The principle areas covered are

discussed briefly below:

a. Specification Analysis: Static analysis of the

specification embodied in the ASSM is used to

uncover internal inconsistencies and incomplete-

ness. Since traceability to the originating DPSPR

is included in the RSL specification, deficiencies

in this document such as the ubiquitous TBD (To be

Determined) may also be found. Typical internal

inconsistencies are DATA elements which form the

subject of no INPUT relation and ALPHA's which

appear on no net (ie: are unused).
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b. Simulation Generation: Using the model of the

systems requirements specified in the ASSM, REVS

is capable of automatically generating code to

simulate the system. This provides a very

effective means both to test the validity and

consistency of the requirements and to communicate

system behaviour to the users. Automatic

monitoring of the validation points built in to

the simulated R-Nets is provided and timing

relationships are maintained to allow faithful

modeling of asynchronous real-time systems.

Automatic generation of the simulation code,

besides saving manpower, prevents configuration

management problems in maintaining traceability

between simulation and requirements.

c. Interactive Graphics: REVS provides an inter-

active facility which allows translation between

RSL structures and R-Nets. The networks may be

manipulated and the modified networks retrans-

lated. The result is that R-Nets and RSL may be

used as interchangeable representations for entry

into the ASSM and for communication between team

members.

d. RSL Post-Processor: As a further communications

aid, a post processor allows translation of the

fairly cryptic RSL statements into a form more
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like English. No new information is added -- just

redundancy and noise -- but improved readability

and user acceptance is reported [18].

RSL and R-Nets are the media used for generating

requirements specifications and REVS provides the tools for

their validation. Underlying these is the methodology

employed by SREM -- a sequence of activities and usage

necessary to generate the requirements. The steps forming

this methodology are described briefly below. Alford [161

provides a full description.

a. Translation: Requirements of the DPSPR are

translated into baseline requirements in RSL, R-

Nets are generated and static analysis is

performed to provide feedback of deficiencies in

the DPSPR which is reviewed and placed under

configuration management procedures at the end of

the phase.

b. Decomposition: Filling out the baseline to

completely specify the computational requirements

of the system and to generate preliminary sub-

system performance requirements. Changes in the

interface specifications as sub-system design

progresses may be incorporated
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c. Allocation: Evaluation of path performance to

allow engineering tradeoffs and generate

performance requirements for the software.

d. Feasibility Demonstration: Analytical demonstrat-

ion of the feasibility of critical or doubtful

paths by simulation prior to design phase.

B. PROBLEM STATEMENT LANGUAGE/PROBLEM STATEMENT ANALYZER

Problem Statement Language/Problem Statement Analyser

(PSL/PSA) was developed at the University of Michigan in the

early 1970's 120]. While its primary application is in the

problem domain of business data processing, there are a

number of similarities to RSL and REVS in its general

approach.

PSL describes a system model which consists of Objects

and Relationships. Objects have Properties and these in

turn have Property Values. Relationships connect different

objects. While this is superficially similar to RSL, the

difference lies in the representation of processing which,

in PSL, is based on the concept of data flow rather than on

the stimulus-response paths of SREM.

PSA is a collection of automated tools for performing

consistency checking on the PSL model. ' Like REVS, it does

not operate on the PSL description itself but rather on a

representation of the proposed system in a database. PSA is

able to perform data definition analysis, static analysis

which checks the consistency of the input statements,
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dynamic analysis which determines dynamic relationships

between input and output and checks timing consistency and

volume analysis which deals with volume of data flow. PSA

provides, in addition, some management support facilities

such as modification recording.

Recent enhancements to PSL/PSA have resulted in the

META/GA system (21]. This allows the PSL to be varied to

suit the application more closely and meets a similar

objective to the extendability of RSL. The META system

takes a formal meta-language description of the PSL to be

used and produces a language specification. The target

system is described in the new PSL and may be analysed by a

Generalised Analyzer which corresponds to PSA and draws on

the META Data Base to adapt to the new language. The rel-

ationships between the principal components of PSL/PSA and

META/GA are illustrated in Figure 3.3.

Factors which limit the usefulness of PSL/PSA for

embedded systems are the data-flow orientation of the model,

which provides an inadequate representation of control paths

(22], and the difficulty in expressing timing and other

performance constraints (23].

C. STRUCTURED ANALYSIS AND DESIGN TECHNIQUE

The Structured Analysis and Design Technique (SADT) is

an analysis and design methodology developed by Softech Inc

[24]. It uses a blueprint-like graphic language (SA) to
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represent data and control flow in a disciplined manner and

its domain of application is not limited to software

engineering. This language is applied using a methodology

which provides management techniques including the alloc-

ation of roles to team members, regular reviews, recording

development decisions and maintaining configuration control

of the developing work.

The graphical primitives of SA are boxes and arrows,

but the diagrams also include text to name and describe

these features. A box is a 'bounded context', it may re-

present data or activity. Data and control flows are shown

by arrows. Al box must always have an arrow entering on the

left side and exiting on the right, representing control or

data which have undergone a transformation. An activity box

must also have at least one control arrow entering the top

providing the dominant constraint on the activity. Other

arrows entering the top and bottom indicate additional con-

straints and means or mechanism. Figure 3.4 illustrates the

basic SADT box structure and the method of decomposition.

A system being modeled is decomposed in a top-down

manner. Boxes assigned at one level are themselves re-

presented by lower level diagrams until the final level is

reached. The result is a hierarchy of diagrams representing

views of the system in progressively finer eetail but allow-

ing rapid access to the wider context of any particular

aspect.
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SADT itself has no computer aided analysis or develop-

ment tools. Ross [25] however, has pointed out that with a

few exceptions, PSL and its associated database are able to

represent the relationships which appear on SA diagrams and

that transformation of these relationships into a machine

readable form is straightforward. Such an application

allows the automated analyses and support of PSA while

maintaining the good communication offered by SA.

Like PSL/PSA, the processing representation used

by SADT is primarily one of data flow. While the control

arrows allow explicit representation of control paths, Zave

(22] considers these too informal for the precision and

expressiveness required for control-oriented systems.

D. PAISLEY

PAISLey is a Process Oriented, Applicative, Interpret-

able Specification Language under development at Bell Lab-

oratories by Zave [22]. The language is used to develop a

model of the proposed system which interacts with a model .

the environment in which it is to operate. The sub-models

consist of sets of asynchronous processes and the entire

model is executable. The approach differs from earlier

specification methods in three principal ways: explicit

modeling of the environment, the use of processes (as

opposed to data-flow or stimulus-response paths) as the

primary specification orientation, and the fact that the

models are executable.
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Most system modeling approaches treat the environment

as a 'black box'. Explicitly modeling it, on the other

hand, offers some advantages. The complex interactions

common in embedded systems can be organized around the

processes which take part in them, allowing a precise, but

comprehensible organization.

An explicit model also aids the anticipation of changes

which will result from alterations in the environment.

Since internally generateC Thanges are limited to correction

of discrepancies in the system model, these will usually

form only a small proportion of the total requirements

changes over the life of a typical system.

Finally, an environment model is a useful tool for

requirements analysis as well as specification since it

promotes appropriate questions and assists in communication

with the users.

Processes are state-machine representations of auto-

nomous computation. They are specified as a set of valid

states and a 'successor function' which defines the

successor state for each given state. This representation

emphasises the cyclic nature of system components, in con-

trast to the sequential emphasis of the R-Net.

Processes operate asynchronously and communicate

by means of interactions known as exchange functions which

synchronize the communicating processes at the point of

exchange. Figure 3.5 shows the processes in a simplified

40



ENVIRONMENT PROPOSED SYSTEM

real-time

S sensor

nurse reader

monitor Sy t(r s2

dterminal

crt

terminal

h Figure 3.5
| Partial Model of a Patient Monitoring System (from [221)

41



patient monitoring model, together with their interactions.

Among the advantages of this notation are that processing of

data and flow of control are integrated rather than separa-

ted as, for example, in the R-Net and DATA entities of SREM.

As does simulation under REVS, execution provides a

tool for understanding and a means of validating the req-

uirements specification and system design. Because the

PAISLey language is itself executable, the need for a separ-

ate simulation code generator is avoided. In addition, the

requirement for execution forces coherence and discipline on

the PAISLey specification.

Disadvantages of the PAISLey approach noted by Zave are

the tendency of the specification to encroach on system

design and the fact that the requirement for execut-ability

forces a degree of precision and a level of detail which

makes the specifications difficult to understand for the

untrained end user or manager. The author suggests comm-

unication using simplified aids derived from current PAISLey

specifications but, unless the derivation was by machine,

there is a danger that the informality so introduced could

hinder communication as much as enhance it.
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IV. NAVAL RESEARCH LABOBATORX TECHIQUES

The US Naval Research Laboratory and Naval Weapons

Center are conducting a joint project to redesign and re-

build the Operational Flight Program (OFP) for the Navy's A-

7E aircraft. While the existing program works reliably, it

is expensive to maintain because its space and time margins

are small, it is poorly documented and therefore not well

understood by the maintenance personnel and its structure

makes it difficult to change. The project will apply a

number of software engineering techniques in the design of

new software to alleviate these problems [26].

The objectives are to demonstrate the feasibility of

using these techniques in a large scale project and to

provide a useful model of their application in a Defense

context to guide other systems implementors. In addition,

the selection of a space and time critical program, is

intended to demonstrate that the techniques do not need to

impose a prohibitive processing or memory overhead.

Henninger et al [12] [27], report on the initial phase

of this project--the development of a formal Software Req-

uirements Specification which describes the external behav-

iour required of the OFP software without describing an CFP

implementation. In addition to its primary use as the

requirements document governing the remainder of the pro-

ject, the specification is intended to serve as a model for
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the application of the techniques used. This chapter dis-

cusses these techniques and the resulting document.

A. OBJECTIVES

A number of objectives were defined for the require-

ments specification. These were derived from consideration

of the subsequent uses to which the document would be put

and the expected readership. They recognize that the com-

pleted document will be used as a reference tool during

design, implementation and maintenance, primarily by exp-

erienced programmers who already have a knowledge of the

program's general purpose. It therefore must answer

specific questions quickly rather than serve as a tutorial.

The objectives are outlined below:

a. Specify external behaviour only. In order to

avoid placing unnecessary constraints on design

decisions, the requirements document should not

imply any particular implementation. Rather, it

should outline acceptance requirements.

b. Specify constraints on the implementation. Em-

bedded systems software commonly must comply with

externally imposed hardware interface specificat-

ions. These constraints form a legitimate part of

the software reqirements specification and can be

included without fear of over-influencing the

design.
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C. Be easy to change. As discussed in Chapter II,

change is frequent in embedded systems. If the

requirements document is not easy to change, its

utility as a reference tool will rapidly diminish.

d. Record forethought about the life cycle of the

system. As Boehm (28J and others have stated, one

characteristic of quality software is its ability

to be adapted to new requirements or environmental

constraints without major restructuring. Clearly,

some changes will be easier than others but, if

the likely direction of changes is known during

the design phase, appropriate provisions can be

made. The appropriate time to determine this

direction is during the requirements phase.

e. Characterize acceptable responses to undesired

events. As for likely changes in requirements,

the desired response to operator errors and hard-

ware failures is better ascertained from the user

during the requirements phase than developed ad-

hoc during design and implementation.

These objectives correspond closely with those discuss-

ed in Chapter II with the exception of explicitly catering

for communication between users and designers. While the

ability to provide rapid answers to questions of system

performance assists the analysts communications task, the

format and notation conventions do not lend themselves to
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casual reading and the notion of providing a tutorial intro-

duction was specifically excluded from the requirements

document's objectives.

One reason for this is that the A-7E software is what

might be called 'heavily' embedded--the computer system and

its software form only a small part of the entire avionics

system which the user sees. Provision of user level doc-

umentation on the software alone would therefore not be

useful in the absence of detailed knowledge on the part of

the user of the hardware aspects of the system and how the

pieces fit together.

For other systems, for example ships' combat data

systems, where the software forms a greater and more central

part of the whole, user level documentation on the program

would be useful. In such cases, some way of re-expressing

the information in a more easily comprehensible form would

be desirable.

B. PROCESSING REPRESENTATION

A major difference between the A-7 specification and

those designed by other methods such as SREM, is that the

specification does not provide an explicit model of the

system being described. The technique used derives from the

State Machine of Parnas (29], one of the participants in the

A-7 project. The approach is discussed briefly below --

Liskov and Zilles (30] give a more detailed treatment.
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1. State Man Model

Implicit specifications for the behaviour of an

object such as a software module can be generated by ident-

ifying an abstract (possibly infinite) state machine with

the object and describing the changes of state of the

machine resulting from the application of the available

operations.

Operations may either cause a change of state (0-

operations) or return a value which is associated with some

aspect of the present state (V-operations). The different

states of interest in the model are therefore fully des-

cribed by the set of allowable values of the V-operations

and the specification is given by identifying the effect of

each O-operation on all V-operations. Module properties

apply to a group of operations as a whole and serve to

clarify the relationship between operations.

Figure 4.1 gives the state machine specification

for a simple stack data structure employing 0-operations

"Push" (add a data item to the top of the stack) and "Pop"

(remove the top item). The state of the stack is described

by the V-operations "Depth" (the number of items on the

stack) and "Top" (the value of the top item). The important

point to note is that the specification describes only the

external behaviour required of an abstract data structure--

reference to its possible implementation as a push-down

stack is limited to the choice of names.
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V-operation: TOP
possible values: integer, initially undefined
parameters: none
effect: error call 1 if 'DEPTH' = 0

V-operation: DEPTH
Possible values: integer, initially 0;
parameters: none
effect: none

O-operation: PUSH
Possible values: none
parameters: integer a
effect: TOP = a

DEPTH = 'DEPTH' +1

0-operation: POP
Possible values: none
parameters: none
effect: error call 2 if 'DEPTH' = 0

DEPTH = 'DEPTH' -1

Module Properties:
The sequence PUSH(a); POP has no net effect if no
error calls occur.

Figure 4.1
State Machine Specification for a Push Down Stack
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Problems with state machine specifications noted

by Liskov and Zilles have to do with coping with the com-

plexity introduced when 0-operations have delayed effects

and allowing for changes -- a new V-operation may require

changes to a large number of O-operation specifications.

2. Events ad Condiion Tale

In the A-7E OFP specification, the software is

described as a set of functions associated with output data

items. These are roughly analogous to the V-operations of

state machine in that each function can be described in

terms of externally visible effects and the aggregate of the

functions describes the allowable states. The output values

taken on by the functions are described in terms of events

and conditions. A condition is a Boolean predicate which

characterises some aspect of the current state of the system

for a measurable period. An event defines a particular

instant of time and occurs when the value of a condition

changes.

Figure 4.2 shows the stack of figure 4.1 specified

in terms of events and conditions. The approach retains the

design freedom of the state machine model but also avoids

the two disadvantages outlined above - delayed operations

are easily handled by appropriate event specifications and

adding additional output functions does not involve the

ripple-effect observed with the O-operators.
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Output data item: TOP

Condition Events

DEPTH > 1 PUSH(a) X POP

DEPTH = 1 PUSH(a) POP X

Action: TOP:=a TOP:=undefined TOP:=*tos*

Output data item: DEPTH

Condition Events

DEPTH = 0 POP X PUSH (a)

DEPTH > 0 x POP PUSH (a)

Action: Error (1) DEPTH:=DEPTH-1 DEPTH :=DEPTH+1

Figure 4.2
Event/Condition Table Specification of Stack
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3. Diun

It is clear that the state machine and its deriv-

atives offer greater design freedom that the techniques

described in the preceeding chapter. While an implementor

using a specification produced under SREM is not constrained

to design modules corresponding to the Alphas and their R-

Net relationships, he has a powerful incentive to do so

since this arrangement has already been determined by sim-

ulation to meet the requirements. The same argument applies

to PAISLey.

The A-7E approach, on the other hand, refrains

from suggesting any implementation-- it merely provides a set

of rules against which an implementation may be tested.

This need not always be a good thing, of course. As dis-

cussed in Chapter II, an iterative requirements/design

sequence may be desirable in some circumstances--in these

cases, a requirements specification approach which was more

design oriented would be appropriate.

Zave has criticised the state machine method on

the grounds that it does not permit decomposition of com-

plexity [22J. It is certainly true. that the method is

unsuited to the heirarchical decomposition used in the SREM

R-Net and the SADT diagrams; as the same author has pointed

out, however, abstraction is the most common but is not the

only available approach to decomposition (10].
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The approach used by the NRL project is one of

partition, in which the whole system is described as the sum

of its individual parts--the functions which specify ex-

ternal behaviour. The widespread use of abstraction tends

to suggest that it may be more generally applicable or more

aligned to our natural thought processes. However, at least

in the case of the A-7E specification, partitioning has

provided a satisfactory solution to the problem.

C. SPECIFICATION METHODOLOGY

Heninger lists three principles used in the design of

the requirements document: stating questions before trying

to answer them, separating concerns to partition the task

efficiently among team members and presenting the informat-

ion as formally as possible to achieve precision. These

have been applied consistently throughout the requirements

phase of the project and form the basis of the techniques

developed.

The table of contents for the A-7E document is reprod-

uced as Figure 4.3 and illustrates the principle of sep-

aration of concerns. The heart of the specification is

contained in chapters 2 to 6 and each of these deals with

one aspect of the problem independently of the others. For

example, chapter 2 describes the hardware interfaces without

making any assumptions about the meaning of the data items

concerned; chapter 3 discusses program performance in

isolation of timing constraints which are covered in chapter
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A-7 Software Requirements

Table of Contents

0 Introduction

1 Distinguishing Characteristics of the TC-2
Computer

2 Input and Output Data Items

3 Modes of Operation

4 Time Independent Description of A-7 Software
Functions

5 Timing Requirements

6 Accuracy Constraints on Software Functions

7 Undesired Event Response

8 Required Subsets

9 Expected Types of Changes

10 Glossary

Figure 4.3
Table of Contents - A7E Requirements Document
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4 and accuracy requirements in chapter 5. In addition to

allowing independent work on each aspect to proceed simul-

taneously, this arrangement minimizes the consequential

effects of changes in environment or requirements. Methods

used for the various sections are outlined below.

1. Ijne Specifications

Hardware interface specifications are organized by

'data item', defined as any item or input or output which

changes value independently of other input or output items.

Both the data items themselves and, for non numeric items,

the values they may assume are given mnemonic names by which

they are referenced in other sections. This allows changes

in hardware-specific details to be confined to the interface

specif ication.

As outlined above, the description of the data

items contains no information on its use in the program.

Switch position encoding, for example, makes reference to

switch legends rather than hardware or software functions

controlled. Output data items are described in terms of

their effect on the associated hardware device. For each

data item, all relevant software considerations such as data

representation, instruction sequences for access and timing

considerations are given. Figure 4.4 shows examples of

input and output data item descriptions.
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tDAta Item: IMS System Reliable

Acronym: /IIMSREL/

Hardware: Intertial Measurement Set

Description: /IMSREL/ indicates whether or not the IMS
is reliable based on a hardware self-check internal
to the IMS

Characteristics DI Va:

Encodina: $No$ (0); $Yes$ (1)

Instruction : READ 24 (Channel 0)

Data Representation: Discrete input word 5 bit 0

Qp Data Item: Cursor Enable

Acronym: //CURENABL//

Hardware: Forward Looking Radar

Descripri: //CURENABL// directs the FLR to display
Range and Azimuth cursors as specified by //CURPOS//,
//CURAZCOS// and //CURAZSIN//.

Characteristics f Values:

E: $Off$ (0); $On$ (1)

Instruction gejunc_: WRITE 8 (Channel 0)

fLt Representation: Discrete output word 1 bit 12

Figure 4.4
A-7 Requirements Document -

Input and Output Data Item Descriptions
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2. S F Specifications

In the variant of the state-machine method des-

cribed above, software functions are associated with output

data items and are specified in terms of conditions and

events. Two techniques are used to allow concise specif-

ication of complex functions, text macros and modes.

Text macros allow frequently used or complex con-

ditions to be represented in a shorthand form. They are

defined in the dictionary section and thus, only one part of

the document requires alteration should the described con-

dition change. Text macros are also useful in maintaining

design freedom; where output data items depend on quantities

that cannot be directly obtained from an input, a text macro

can be used to specify the quantity without defining how the

implementation is to derive it. For example, the text macro

!ground pullup point! defines the point at which the pilot

must execute a 4g pullup after weapon delivery to avoid

hitting the ground. This value is obtained from altitude,

speed, drag and other data but its derivation method is

design/implementation decision.

Modes partition the OFP states into a number of

(possibly overlapping) subsets which have applicable func-

tions in common. They provide a shorthand means of referr-

ing to classes of conditions by the single condition 'in

mode *XXX*' which is true when the system is in mode *XXX*.

The selection of the modes to use may be arbitrary although
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the degree to which the function descriptions are simplified

will depend on the selections made. The A7-E OFP modes are

based on the avionics system modes referred to in other

documentation.

Modes are defined by two tables, a condition table

which specifies conditions which are true when the software

is in the particular mode and a transition table which lists

the events which cause a transition between each combination

of modes. These are partially redundant, and therefore

potential sources of inconsistency, but provide the inform-

ation in a convenient form. Sample mode descriptions are

presented in Figure 4.5.

Software functions are classified as demand (init-

iated by some event) or periodic (performed repeatedly but

started and stopped by an event). Functions also are spec-

ified by means of tables. Condition tables define periodic

functions and specify the performance of the function under

all allowable combinations of conditions and modes. Event

tables show when demand functions are to be performed or

when periodic functions are to be started and stopped.

Figure 4.6 illustrates a periodic function description.

D. ASSESSMENT OF THE TECHNIQUES

Basili and Weiss, also working at NRL, carried out an

evaluation of the A-7E Software Requirements Document by

analysing changes made to the document in the 14 months

after it was issued (281. While this analysis cannot
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Mode Condition Table:

(specifies the conditions that must hold in each mode -- mode names
are used in the rest of the document as an abbreviation for the
conjunction of the conditions in its row of the table)

Weapons Delivery Mode Conditions (partial)

Node /MFSW/ /FLYTOTOG/ /FLYTOTW/ /HUDREL/ Other

*Nattack* $NATT$ x x $yes$ Iready station
AND NOT
!reserved weapon!

*Noffset* $NATTOFS$ $DEST$ NOT 0 $yes$ Iready station
AND NOT
Ireserved weapon!

*a/a guns* !NO WD MFS! x x x /GUNSEL/ = $Yes$

Mode Transition Table:

(specifies the transitions between each mode -- rows represent the
mode before transition and columns the mode after. The entries in
the table are pointers to lists of conditions which control the
occurrence of thge transition. A blank entry indicates that no
transition is possible)

Transitions between Weapons Delivery Modes (partial)

*none* N-I N-2 N-10
*Nattack* I-N 1-1
*Noffset* 2-N
'a/a guns* 10-2

*none* *Nattack* *Noffset* *a/a guns#

Figure 4.5
A-7 Requirements Document -

Mode Descriptions
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Periodic Function La0: Update HUD Magnetic Heading

Modes jn which function reuie:

Alignment: all
Navigation: all
Test: *Grtest*

Initiation/Termination Events: None - always performed

Outout Data Ite=s: /IMAGHDGH//

Condition Table 4.3.6-a Magnetic Heading

MODES CONDITIONS

All Alignment and
Navigation Modes Always X
except OIMS fail*

'IMS fail* (NOT /IMSMODE/=$Offnone$) /I'4SMODE/=$Offnone$

//MAGHDGH// angle defined by 0 (North)
/MAGHCOS/ and /MAGSIN/

Figure 4.6
A-7 Requirements Document -

Periodic Function Descriptions
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provide a direct comparison with documents produced by other

methods, it does provide sufficient data to allow a subject-

ive assessment of the degree to which some of the objectives

of the project have been met.

The use made of the document was inferred from an

analysis of the source of changes. This indicated that it

was in heavy use as a design reference as intended. There is

no current application as a maintenance reference for the

new OFP at this stage of the project but there is evidence

that the document is being used by maintainers of the exist-

ing software.

In the analysis period, 79 errors in the requirements

document were discovered. The predominant causes were in-

correct fact (37%), omissions (24%) and clerical errors

(23%). Errors involving internal inconsistency and ambig-

uity were considerably less common at 10% and 4% respect-

ively. The frequency of factual errors is surprising in the

light of the fact that the requirements document was valid-

ated against the existing OFP by experienced personel before

it was published.

The majority of the errors (74%) were discovered in

sections 2 and 4, which deal with the hardware interfaces

and the software functions respectively. In section 2 most

of the errors were omissions and in section 4 the majority

were factual.
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These sections are the two most directly concerned with the

external interfacing and behaviour of the program, and their

development requires significant interaction with users and

hardware specialists. It is tempting to attribute the error

incidence in these sections to the lack of communication

aids discussed above. However, as the authors of the survey

point out, it may also be influenced by the use being made

of the document at this stage of the project and a full

analysis of errors by section should await completion of

implementation.

Effort to correct the errors totalled eleven man-weeks

with 94% requiring less than one man-day. The high total

figure was caused by a factual error in the specification of

a coordinate system which required considerable research to

determine the correct information and contributed more than

50% of the total. Considering the total effort involved in

producing the document (75 man-weeks) and in software dev-

elopment during the analysis period (122 man-weeks), the

authors consider that the effort to maintain the document

was acceptably low. Ease of change appears to be confirmed

by the fact that 85% of the changes made to the document

affected only one section. The major error referred to

above was in this category.

No case was discovered where implementation facts were

incorrectly given by the requirements document, implying

that the objective of design freedom has been met. The
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question of whether the remaining objectives, to do with the

forecasting of change and the specification of error resp-

onses, have been met will remain open for some time. The

data recording on which Basili and Weiss based their results

is continuing and answers to these questions should become

available.
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V. CASE STUDY-TE HARPOON WEAPONS SYSTEM

As outlined in the last chapter, the techniques dev-

eloped during the NRL study offer an attractive alternative,

in certain circumstances, to other methods in use--both ad

hoc and formalized. The A-7E project, however, was staffed

by highly qualified members and was duplicating an existing

program--all the answers on required external program behav-

iour were available by testing the response of the original

software.

In an attempt to gain experience with the techniques in

another application, a limited case study was conducted by

using them in the development of a partial software require-

ments document for a replacement weapons control console for

the Harpoon weapons system. This chapter provides some

necessary background details on that system and discusses

the application of the NRL techniques in this context.

A. EXISTING HARPOON WEAPON SYSTEM

Harpoon is an antiship missile which may be launched

from a variety of platforms--aircraft, submarines, and sur-

face ships. It has an all-weather capability and provides a

means of mounting an attack against a surface target from

beyond horizon range. The missile incorporates a booster

section for ship and submarine launch but, beyond this,

variations for the different platform types are minor.
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1. Ovevie

Prior to launch, targetting parameters are passed

to the missile by the launch platform. These control the

flight path, search patterns and modes and desired terminal

manouevres. Once it has been launched, the missile is

autonomous. It flies down the selected flight path until a

target is detected in the search area by radar or passive

detection of electromagnetic radiation. It then descends to

near sea level en route to the target, to reduce the prob-

ability of its being detected or successfully counter-

attacked by the target. Finally it performs the selected

terminal manoeuvering and attack.

For ship Harpoon weapon system installations, the

preparation and launch of missiles is accomplished by the

Harpoon Shipboard Command and Launch Control Set (HSCLCS).

This subsystem receives as inputs targeting data, ship's

motion data, and Harpoon missile and launcher cell status

reports. HSCLCS provides the following control functions:

a. Missile initialization and power up.

b. Passing of targetting parameters to missile.

c. Launcher alignment (in systems with trainable

launchers).

d. Missile launch.

e. Monitoring of missile and launcher cell status.

Figure 5.1 illustrates the HSCLCS in block diagram

form. The components of immediate interest in the system
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are the Harpoon Control Console (HCC) and the associated

Weapon Control Indicator Panel (WCIP). The HCC provides the

control function for the entire HSCLCS as well as the inter-

face to the ships Weapon Control System (WCS)--an informat-

ion system used to support tactical decision making. The

WCIP provides the interface for the Harpoon weapon system

operator. The remainder of the equipment is used to inter-

face the HCC to the launcher, missile and the ships environ-

mental sensors.

The HCC control functions are provided by the Data

Processor Computer (DPC) -- an early 16 bit microcomputer

with limited memory. The DPC utilizes an assembly language

program to provide the following functions:

a. Receipt of target range and bearing and recommen-

ded engagement parameters from WCS (or from WCIP

in local mode).

b. Receipt of commanded engagement parameters from

WCI P.

c. Launch envelope parameter validation.

d. Missile command generation.

e. Prelaunch testing, sequencing and timing.

f. System 'housekeeping'.

The WCIP provides for operator entry of engagement

parameters and displays status information to the Harpoon
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system operator during formulation of the fire control

solution. If target parameters are unavailable from WCS,

they may be manually entered by the operator. Details of

the WCIP operator controls are given in Figure 5.2.

2. Eggmn eeto

In the original HSCLCS, control of the engagment

to be conducted by the missile is limited to selection of

Range & Bearing Launch (RBL) or Bearing Only Launch (BOL)

modes and to selection of a small, medium or large search

pattern. BOL mode is used when no reliable target range

information is available -- the missile searches along the

flight path between 'specified minimum and maximum ranges.

In RBL mode, the pattern determines the size of the 'box'

about the selected target position which will be searched.

To accommodate improvements in missile capability,

a modification was introduced in late 1981, providing a

number of additional functions. The more important of these

are small target selection, search expansion selection and

waypoint entry. All of these provide means of increasing

the selectivity of the missile in an environment where there

are a number of potential targets.

Target selection conditions the target detection

logic of the missile to respond to different sized radar

returns and modifies the relative destruction probabilities

of different size targets within the search box. Search

expansion selection performs a similar function by setting
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the initial direction in which the seeker head moves in the

search pattern. Waypoints are positions through which the

flight path passes en route to the target and allow the path

to be selected to avoid neutral or friendly ships and to

approach the target from a preferred bearing.

Other changes are aimed at improving the kill

probability of the missile against well defended targets.

They provide means of initializing a salvo of missiles with

different engagement parameters and timing their firing for

simultaneous arrival at the target.

B. DEFICIENCIES OF EXISTING SYSTEM

The major drawback of the existing system is that the

information provided is inadequate for proper engagement

planning. In ships where the WCS function is provided by

the Naval Tactical Data System (NTDS), a limited arou-. f

automated assistance is available but much of the planA..ng

must rely on manual calculation. In an enviromnent of tight

time constraints and extreme stress, the potential for human

error is large.

While NTDS could potentially provide the required info-

rmation in a suitable form, there are a number of diff-

iculties in this approach. First; not all Harpoon fitted

ships are also equipped with NTDS. Second; in most ships,

NTDS facilities are fully committed and the Harpoon engage-

ment control function could only be accommodated at the

expense of some other capability.
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The second deficiency is that the full capabilities of

the flight vehicle are unable to be used due to an inability

of the HSCLCS to set the required pre-launch parameters.

The original HSCLCS assumes a fixed bearing flight to the

target position with limited control over engagement param-

eters. This coincided with the capabilities of the original

missile. A number of subsequent improvements in the missile

have, however, outstripped the ability of the HSCLCS to

accommodate them.

While the 1981 modification partially corrects this

situation, it does so at the expense of complicating the

parameter entry process to the point where the probability

of error is, again, high. The potential for future enhance-

ments using the same basic system is small.

C. PROPOSED SOLUTION

The deficiencies outlined above have been considered by

responsible DOD authorities and development of a further

modification to the HSCLCS is now in process under the

sponsorship of the Naval Sea Systems Command. The changes

involve replacement of the existing WCIP with a new version

containing a display, a discrete switch and indicator panel

and a local processor. Other than software changes to the

DPC to accommodate the new panel, only minor modifications

to the remainder of the system are involved. Figure 5.3 is

a pictorial representation of the new WCIP.
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The panel will provide a graphic display of a subset of

the tactical situation to a maximum range of 128 miles. The

operator will be able to enter tracks (positions of surface

contacts with associated course and speed data) which will

be kept in position by dead reckoning.

Selection of a track as a target will initiate provis-

ion of information on the acquisition probability (Pacq) of

both the selected target and other tracks in the vicinity.

This data will be updated dynamically as engagement param-

eters, such as way point positions, are altered, allowing a

trained operator to develop an optimal engagement plan.

The panel will also provide assistance to the operator

in planning and conducting salvo firings and coordinated

firings with other Harpoon fitted ships. This will be

achieved by allowing four simultaneous engagement plans and

by calculation and display of time over target for each.

The principal advantage of the new panel is that by improv-

ing the human interface to the system, ambiguity and the

consequent probability of error is reduced. The fact that

the panel's functions are to be implemented in software also

allows future enhancements, to accommodate missile improve-

ments and more closely integrate NTDS and Harpoon.

D. REQUIREMENTS DOCUMENT

A skeletal requirement document using the NRL approach

was generated for the Replacement WCIP. In order to reduce

the scope of this work to a manageable level, only the
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external interface was specified--the second interface, to

the HCC, has been studied informally and appears to be

suitable for the application of the same techniques. The

narrative description discussed below and a selection of the

remainder of the document is reproduced at Appendix A.

Because of the embryo nature of the replacement WCIP

project, it was necessary to take the conceptual design at a

given point in its development and carry on independently

from there. Since the object of the study was to assess the

value of the NRL techniques rather than to develop a viable

design for the WCIP, this is unimportant. However, it did

give rise to some difficulties which are discussed later.

It was found necessary to generate a narrative

description of the interaction between the WCIP and the

human operator before attempting to start work on develop-

ment of the formal requirements. This was not necessary in

the case of the A-7E project, due the existence of both the

previous OFP and its accompanying documentation.

In chapter IV, the omission of explicit provision for comm-

unicating with the prospective users of a system was dis-

cussed as a drawback of the NRL approach. The narrative

description, however, fills this role satisfactorily. The

usual objections to informal system descriptions--ambiguity,

inconsistency and completeness--are partly nullified by the
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fact that such problems rapidly come to light when the

document is used to develop the formal specification.

2. Ue Autat Ad

Generation of any substantial document requires a

considerable amount of drafting and re-drafting. The tech-

niques used for the requirement document also require much

cross referencing between tables. The NRL project used no

specifically designed autcmated aids and this is one of the

advantages of the system as compared to, say, SREM which

requires a substantial software investment in its own right.

Fortunately a number of inexpensive general purpose tools

are now becoming available on mini- and microcomputer based

systems which are well within the reach of any organization

likely to be developing software requirements documents. A

commercial word-processing program was used during the

Harpoon study and it became clear that for a more complete

study or a larger project, a small data-base management

system would also greatly improve productivity.

E. PROBLEMS ENCOUNTERED

As expected, a number of problems were encountered

during the study. Many of these were due to inexperience

but two raise issues concerning the applicability of the NRL

techniques to different systems. These are discussed in

this section.
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1. Coin with Undefined Inefa

As discussed in Chapter II, subsystem software

requirements generation must frequently proceed in parallel

with overall system architectural design--the partitioning

of system functions between the various hardware and soft-

ware subsystems. Although this was not a problem with the

A-7E project, difficulties were encountered during the

Harpoon case study due to inadequately defined interfaces.

An example of the problem is the interface between

the display and the WCIP software. Since the details of the

display are not yet known, the interface must be specified

arbitrarily. Differences between the specified interface

and the real one implemented by the hardware must be catered

for by interface module specifications which can be defined

once the hardware details are finalized. In selecting the

arbitrary interface, the aim is to ensure that any likely

hardware decisions can be catered for by the interface

modules without changes to the core document. This requires

the interface to have two properties:

a. It must be abstract--details which may vary with

the device selected must be excluded.

b. It must be 'high-level' enough to minimize the

possibility that it will intersect the physical

hardware interface. For example, an assumption

that the WCIP system software reads the position

of the balltab or joystick and uses this to con-
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trol the position of the cursor on the screen will

fail if cursor positioning is controlled within

the display device itself.

Achieving the second property calls for fine

judgement. Correction of the core document to alter a

specification which intersects the hardware interface may

well require major changes. On the other hand, too high a

level of interface will require in the specification of

internal rather than external behaviour and will result in a

partial implementation definition.

Sometimes this will be unavoidable. For example a

display with its own processor--by no means uncommon--may

well be able to accept high level commands to display the

geometrical figures required for the WCIP such as special

symbols, uncertainty elipses, and engagement lines. For

simpler displays, the system software will be required to

break down the patterns into displayable elements such as

pixels or vectors.

Such software would not meet the requirements of a

single abstract interface module [26J since it would require

changes both when the display changed and when the desired

patterns changed. This can be avoided by two modules - one

to translate the patterns into abstract elements such as

lines, arcs and pixels and one to map these elements to the

actual display capabilities. Changes in the patterns would
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then require changes only to the first module and changes in

the display hardware only to the second.

Because of the possibility that the first type of

display may be chosen, the requirements document must use

the first approach. The fact that this choice will con-

strain the implementation if the simpler display is selected

must be accepted.

2. HadigGnrlPros pip

The A-7E software is required to interface with a

number of hardware devices. With one exception, these are

special purpose in nature and are controlled by a small

number of signals. The approach of specifying input and

output data items in terms of their hardware effects and

independent of software functions works well in such cases.

The exception is the computer display panel, which

is constructed of fourteen 7-segment numerical displays and

is used for a number of functions. As the A-7 Requirements

Document notes, the approach above fails in this case due to

the huge number of possible output signals (27 for each of

14 windows) and the fact that only a small subset of these

has any meaning [27:4-651

In the case of the computer display panel, the NRL

team made two changes to the approach used for other hard-

ware interfaces. First, the panel display functions were

related to 'semantic entities' such as present position or

wind speed and direction rather than directly to the output
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data item of a particular bit pattern controlling the seg-

ments of the display. These entities are determined by the

OFP sofware rather than the hardware interface. The second

change was to specify a virtual panel for each of the funct-

ions of the real panel. Each software function which pro-

duced a panel output could therefore be assumed to have its

own dedicated panel. A separate specification section pro-

vided rules for determining which of the panel display

functions controls the real panel at any given time.

The interfaces of the WCIP software, in contrast

with those of the A-7E OFP, are almost all general purpose

in nature. The only interface which can be successfully

specified in terms of software functions acting on hardware

data output items is that to the switch/indicator devices of

the firing sequence panel.

The data entry/display panel is a considerably

more flexible device than the A-7E computer display panel

but can be handled in much the same way. Tying software

functions to semantic entities such as a particular output

message seems intuitively more sensible than cluttering the

specification with the mass of detail required to convert

these messages into their particular hardware representat-

ion. Similarly the use of virtual buttons and panels sim-

plifies the document by segregating the details of mapping

virtual to real devices to a single section. Although the

WCIP/HCC interface was not considered in the study, the same
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techniques should be suitable for this and other computer-

to-computer interfaces.

More severe difficulties arise with the tactical

display since this is an even more flexible device. For the

WCIP, the same approach of relating func tions to semantic

entities was used--in this case, track symbols, flight

paths, uncertainty elipses etc. This can be done since the

number of these entities displayable is limited and small.

In bigger systems, for example NTDS, there are a very large

number of different symbols and the number which can be

displayed simultaneously is not limited. It is difficult to

see how the NRL approach could be used effectively in this

context without introducing excessive complexity.

F. IMPRESSIONS

During the study of the NRL techniques and their

application to the WCIP software requirements, a number of

impressions were gained. These are offered below and

represent the writer's opinions only:

1. C

The criticism discussed in chapter IV--that the

state-machine technique does not permit decomposition of

complexity--is at least partially true. The A-7E OFP is a

small program as embedded systems go. With a larger pro-

gram, the monolithic nature of its view of the system des-

cribed would make it difficult both to generate and to

analyse.
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Work along the lines of the approach used by

PAISLey (chapter 3) may provide a solution to this problem.

In PAISLEY, the system is modeled as a group of interacting

processes, themselves described using the state machine

technique. Such an organization could serve to contain the

complexity of a large system at the expense of encroachment

of the specification on the top level of architectural

design.

2. Verifiability

Because of its emphasis on specifying external

behaviour, the method lends itself readily to the generation

of system testing procedures. This is because the response

of the system to conditions and events is directly specified

rather than having to be inferred from a model as it is in

the systems discussed in Chapter 3. If the specification

techniques were made more rigorous it should, in principle,

be possible to generate testing procedures automatically but

this may detract from the ability of the method to adapt to

situations such as the specification of functions concerned

with general purpose devices discussed earlier.

3. Overall SseDsg

Earlier, the requirement to generate a narrative

system description of the human interface to the system was

discussed. This is a system level design function which the

requirements document must reflect as opposed to a software

design function which should be left until implementation

80



The human interface can be looked at as comprising

two parts--hardware and procedural. The hardware interface

to individual devices such as the joystick, buttons and

screen is usually well defined and is something to which the

software must accommodate. In contrast with this, the pro-

cedural details of how the human will interact with the

devices are usually controlled directly by the software, and

are frequently poorly defined at the system design stage.

The result, as in this case, is that their design and spec-

ification, by default, becomes the task of the software

requirements writer.

An attempt was made during the Harpoon study, to

use the NRL techniques for this purpose but it rapidly

became clear that they are more suited to documenting ext-

ernal system behaviour than to developing it. The reason

for this is that the tabular presentation is excellent for

answering questions about what conditions are required for a

particular output but less useful for providing a mental

picture of system response to inputs. As a result, the

narrative system description mentioned earlier was used.

Since the narrative is useful for communication

with the user and forms a nucleus of the operations manual--

a necessary part of the documentation of any system--this

approach seems to be viable. Requirement techniques which

allow simulation, however, such as SREM and PAISLey appear

81



to offer better promise in this regard since they would

allow the human interface to be developed iteratively in

conjunction with the end users.
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VI. CONCLUSIONS A RECOMMENDATIONS

A. CONCLUSIONS

The techniques developed by NRL for the A-7E OFP pro-

ject appear to meet the goals which were set for them.

Among the strengths of the techniques are the following:

a. The almost complete absence of intrusion of the

resulting document on implementation detail.

b. The fact that no major hardware, software or

training investment is required to use them.

c. The ease with which test specifications may be

developed from the requirements document.

The method also proved relatively straightforward to

apply to another embedded system which, although small,

differed markedly in technology and intent from the one for

which it was developed. While not all aspects of the new

system could be conveniently described using the exact

approach applied to the A-7E software, it was easy to adapt

the appropriate techniques to the new circumstances, result-

ing in a document which retained the style and rigour of the

original.

Among the apparent weaknesses of the method are:

a. Its inability to cater easily for different levels

of abstraction or to provide other means for com-

municating a mental picture of system operation as
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well as a rigorous specification against which

such a picture can be tested.

b. The fact that handling of and interfaces not fully

defined can only be done at the expense of intrus-

ion of the specification into the architectural

design stage of the implementation.

c. The artificiality necessary to handle multi-

purpose output devices adequately and the lack of

a technique for handling general purpose devices

such as CRT displays.

These qualities suggest that the techniques are best

applied initially to small and medium scale systems where

investment in more hardware or software intensive systems is

not justified and where the lack of abstraction is not too

great a disadvantage.

Since development of the requirements does not involve

preliminary architectural design of the software and the

specification uses no formal programming language, expertise

in computer science need not be a pre-requisite to use of

the techniques. The NRL approach is thus better suited than

others such as SREM for direct involvement by experts in the

domain of the system under design rather than in software

design.
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B. RECOMMENDATIONS FOR FURTHER RESEARCH

Clearly, further experience in the use of the method is

necessary to evaluate its potential more fully. The ongoing

experiment by Basili and Weiss, discussed in chapter 4

should provide interesting data but will not replace the

need for assessment in different applications, preferably by

personnel who have first hand experience of other systems

such as SREM. Among the aspects of the method which warrant

further attention are those discussed as weaknesses above

particularly the issues of handling complexity and incorp-

oration of general purpose devices.

In the more general area of software requirements an-

alysis, work is required to clarify further the inLer-

actions between the specification and design phases des-

cribed in chapter 2. Further development of the work repor-

ted in [8] could lead to the development of guidelines

covering this aspect of software acquisition.

Finally, the Harpoon system discussed in chapter 5

offers a fruitful source of research projects. The system

is large enough to provide a challenge and produce worth-

while data but not so large as to be unmanageable or excess-

ively expensive. There are a number of projects in the

Software Engineering and related fields which would profit

from using this system as a test bench.
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APPRNDIX A

This Appendix contains a narrative description of the

software functions for the proposed Harpoon replacement

Weapons Control Indicator Panel, together with a selection

of the more important interface descriptions, mode tables

and function descriptions. Most of the information is in a

skeletal form since the objective of the study was to inv-

estigate the application of the NRL techniques rather than

generate a working requirements document.
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NAAVE SL=STESCRIP/TION

This section provides an informal (and incomplete)
narrative description of the operation of the engagement
control system. It is biased towards system operation as
perceived by the operator, concentrating on information
displayed and allowable actions which may be taken.

To simplify the description, four modes of system
operation are defined: Display, Idle, Designate and Engage.
This is an arbitrary division but serves to organize the
document since the modes differ from one another principaly
in the information displayed and the allowable actions of
the operator.

For each mode, the following information is provided:
* brief description
* rules governing mode entry/exit
* rules governing actions/displays applicable in the mode

information displayed
0 allowable actions

DISPLAY MODE

Mode Description:

The system is always in display mode while the HWS is
operational. The mode is specified to allow for future non-
operational modes such as test or training. In this mode,
the system maintains and updates a display of the tactical

situation which consists principaly of track symbols
indicating the positions of contacts within the range scale
of the display.

Tracks may be entered manually by the operator or
automatically via an interface to the NTDS system. A
maximum of 12 tracks may be maintained by the system,
including the track designating own ship and one aircraft
track. Tracks are entered using own ship relative
coordinates of range and bearing.

Track Selection:

The operator is provided with a thumb operated control
column which can be manipulated to position a cursor on the
screen. Use of this control together with adjacent 'hook' and
'break track' pushbuttons allow any track to be selected for
special attention. Such a track is said to be hooked. Only one
track may be hooked at any one time.
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Information Display:

Tracks are displayed using standard NTDS symbology for
surface tracks. Each track is displayed with a fixed length
course leader.

Track positions are periodically updated for own ship
motion by dead reckoning. The operator is responsible for
updating the positions of tracks for their own motion.

The following HWS and status information is displayed:
* system status (on/off/fault)
* missile inventory
* time of day

The following information is displayed for a hooked track:
* range
* bearing

Allowable Actions:

The following actions may be taken at any time:
I enter manual track
* select range scale
0 offset display
0 set display configuration
• enter environmental data

The following actions may be taken when a track is
hooked:

* drop (delete from system)

* reposition
* enter course

IDLE MODE

Mode Description:

The system is in Idle mode at any time when it is in
Display mode and in neither Designate nor Engage mode.

Allowable Actions:

In Idle mode, a hooked track may be designated to the
HWS for attack.
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DESIGNATE MODE

Mode Description:

The system is in designate mode at any time when a
track has been designated to the HWS for possible attack by
one or more missiles. It ceases to be in designate mode on
receipt of ITL for the last missile or on release of the
designated track. In this mode, the system accepts and
displays engagement data and presents this together with
acquisition probabilities and other assessment information.

Only one target may be designated at any given time but
one to four missiles may be selected to engage that target
simultaneously, using independent engagement plans.

An attempt to designate a track which is unengageable as a
result of over or under range results in an operator alert. The
system remains in its preceding mode(s).

Information Display:

The following information is displayed for a hooked track
in designate mode

i Pacq

The following information is displayed for the
designated track

• Selected Time on Target
• Time to Launch first missile

The following status information is displayed in designate
mode for each missile in the planned engagement

• Pacq of designated track
• missile search mode
* search pattern size (RBL)
Smin/destruct range (BOL)
• search priority
* attack mode
* time to launch

The following information is displayed graphically in
designate mode. This information refers to the most
recently selected missile:
* booster drop zones
* missile flight path
* search pattern
* search priority
• uncertainty elipse (Pacq ??)
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The following HWS information is displayed
* HFCS ready
* booster safelarmed
0 mssile(s) enabled
• heater power on
* ready to fire

Allowable Actions:

The following engagement plan actions may be taken in
designate mode:

* select launcher
* select missile
* select time on target
* enter/delete/reposition way point
0 change missile mode
* change search pattern size (RBL)
0 change min/destruct range (BOL)
* change search priority
• change attack mode
* set flyout range

The following engagement control actions may be taken:
* cancel engagement
* apply/remove heater power
* arm/disarm boosters
* fire

ENGAGE MODE

Mode Description:

The system is in engage mode whenever any missile is in
flight. This is defined as the period from the receipt of ITL
to (TBC) seconds after the projected time to impact reaches
zero. The system may be in engage and designate mode
simultaneously. On completion of the last in flight period
the system reverts to idle mode. The system may also be
forced to idle mode at any time by the operator. In
engage mode, additional information on the engagement is
displayed.

Information Display:

The following status information is displayed in engage
mode:
* information displayed in designate mode
* time to go to impact
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The following information is displayed graphically for each
engaged track.

0 information displayed in designate mode
* missile position (by dead reckoning)

Allowable Actions:

9 cancel engagement (note that this does not affect a
missile once it is launched - all it does is
revert the system to idle mode)
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This section defines the physical interfaces of

the system software. These interfaces are described with
reference to the hardware device interfaces:

a. The HCC interface.
b. The display console.

The interface definitions comprise a brief
description of the external device capabilities and a list
of all applicable input and output data items. Input items
are those originating at the external device, output are
those routed to the external device.

Initially, only a listing of the mnemonic names of
the data items is given. Later expansion will be required
to cover applicable ranges of values, resolution and data
representation.
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The display device is a general purpose CRT or
plasma display console with the capability of displaying
both graphics and text. The device is not yet fully
specified but incorporates the following input and output
capabilities:

a. A screen area for displaying graphics.
b. A screen area for displaying text.
c. A joystick capable of controlling the position of

a cursor on the screen.
d. A number of general purpose buttons with legends

alterable under software control.
e. A keypad for numeric entry.

f. Special purpose switches and indicators for
launcher selection/status, firing sequence, etc.

For the purposes of this document, the device is
considered as a number of virtual devices, a tactical
display, comprising the majority of the display screen and
the Joystick, a data entry/display device comprising the
peripheriphery of the screen together with the general
purpose input buttons, and a firing panel, comprising the
dedicated switch/indicator devices.

Tatia Dipa Device

The tactical display device uses a general purpose
CRT or olasma panel to provide a schematic representation of
the tactical situation. Its single input is the joystick
which provides positioning information to allow the operator
to 'select' point on the display.

Input Data Items

/CURSOR/
A signal which indicates the position of a point on the screen
selected by the operator.

/ HOOK/
Signal indicating that the 'hook' button on the joystick has
been pressed.

/BREAK/
Signal indicating that the 'break track' button on the
joystic has been pressed.
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Output Data Items

//TRACKO//..//TACK1O//
Order to display a single track symbol on the display.
Data:

Position
Symbol type
Course
Display parameters (eg. flashing)

//HOOK/I
Order to display a hook circle about any track.
Data:

Position

I/TRAJECTORY//
Order to display a trajectory path between the own ship track
symbol and any other track symbol. A path consists of one or
more straight line segments.
Data:

Start position
End position
Intermediate position(s)

//SEARCH//
Order to display a search pattern. This consists of a closed
area bounded by two radial lines and two arcs.
Data:

Origin
Axis directir
Min radius
Max Radius

IIELIPSEI/
Order to display an uncertainty elipse. This is a locus of
constant kill probability about a target position.
Data:

Origin
Axis direction
Major axis
Minor axis

//BSTDROP//
Order to display booster drop zone. This is an area buunded by
two radii and two arcs.
Data:

Origin
Axis direction
Min radius

Max Radius
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This virtual device consists of a display panel
(part of the screen of the Tactical Display), a numeric
entry panel and a number of general purpose input buttons.

For the remainder of this document, the display
panel is considered to be broken up into sections, each one
dedicated to a particular display item and the buttons are
each considered to be dedicated to a single input quantity.
In fact, this is not the case and information regarding the
ovelaying of these virtual functions onto the limited number
of physical display sections and buttons is given below.

Logical/Physical Mapping:

The data display/entry device contains 14 Variable
Action Buttons (VAB), the legend which describes the function of
each button is written on the edge of the screen adjacent to the
button. The area used for the legend may be highlighted by the
use of reverse video to provide a 'cue light' for feedback to
the operator or for other purposes.

This arrangement can be used to provide a multi-level
menu selection system. A selection of tables describing the
individual menus follows.

MENU #: 0 (main menu)
MENU LEVEL: 0
REACHED FROM:
VALID IN MODE: All

VAB LEGED FEEDBACK ACTION NEXT MENU

1 16 mile Ist.ectll /R16/
2 32 mile [selectlI /R32/
3 64 mile !selectl! /R64/
4 128 mile Iselectil /R128/
5
6
7
8 set time Icue! /TIME/
9 set env !flash! /ENVDATA/ 2

10 new trk !flashl /NEWTRK/ 3
11 repos Iflash! /REPOS/
12 drop trk Iflash! /DRPTRK/
13 classify Iflashl ,CLASS/ 3
14 desig Iflash! /DESIG/ 4
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MENU #: 1 (environmental data)

MENU LEVEL: 1
REACHED FROM: menu 0
VALID IN MODE: All

iVAB LEGEND FEEDBACK ACTION NEXT MENU

1
2
3
4
5
6
7 tac disply Iflash ! /MAIN/ 0

8 wind speed Icue! /WIND/

9 wind dirn Icuel /WDIR/

10 sea state Icue! /SEA/

11 rain Iselect I /RAIN/

12 dry Iselectl! /DRY/

13
14

MENU #: 4 (attack menu)
MENU LEVEL: 1
REACHED FROM: main menu

VALID IN MODE: *desigo, 
*engage*

VAB LEGEND FEEDBACK ACTION SUB-MENU

1 stbd ichr Iselectl! /SLCHRO/

2 port lchr Iselectil /&CHR1/

3 cell 1 Iselectn! /CELLI/

4 cell 2 iselectni! /CELL2/

5 cell 3 IselectnI /CELL3/

6 cell 4 !selectnl /CELL4/

7 tac disply !flashl /MAIN/ 0

8 srch mode !flashl /SEARCH/ 5

9 srch pri, iflash! /SPRI/ 6

I0 attack md Iflashl /ATTMD/ 7

11 waypoint !Icuel /WAYPT/

12 time at tgt icue! /TOT/

13 fly out r !cue! /FOR/

14 pacq Iflash! /PACQ/
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Other Input Items:

/VALUE/

Numeric valtue entered by the operator using the keypad

Output Data Items:

//VALUE//
General purpose numerical output

//TOD//
Time aof Day
hhmM3S Zulu time

//TOT//
Time on Target
hhmmss zulu time

//HRANGE//
Range at' hooked track

Bearing at' hooked track

//HPACQ//
Probability at' acquisition at' hooked track

//ENGMSGI// . . //ENGMSG4//
Engagement message for missile 1..4I
data: cell

fes status
acquisition probability
search mode
search priority
attack mode
launch time
time to impact

//DMINRG//
Minimum BOL range far designated track

//DDRG//
Destruct range foar designated track

//DFOR//
Fly out range far designated track

lID TRAJ//
Terminal Trajectory far designated track
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Zia"n ZAMLI

The firing panel consists of the dedicated
switch/indicator devices on the WCIP other than the joystic
assembly and the numeric keypad which are included in the
tacticaL and data displays respectively.

Input Data Items:

/LCHRP/ . . /LCHRS/
Select port/starboard launcher

/CELL1/ . . /CELL8/
Select cell 1..8

/HEATER/
Select missile heaters on/off

/CANCEL/
Cancel engagement

/FIRE/
Initiate firing

/FUZE/
Select fuze mode (contact/proximity)

I ARM/
Arm/disarm booster

/LOCAL/
Select local/normal mode
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Output Data Items:

//CSTAT1// .. //CSTAT8//
Missile Cell Status 1 .. 8
Reedy/Dud/Empty

//HTRPHR//
Heater power on

//RTF//
Ready to fire

//LCHEN//
Launcher enabled

/ /MSLF.N//
Missile enabled

//ARMED//
Booster safe/armed

//FUZE//
Contact/prozimity fuze

//LOCAL//
System Status (local/normal)
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The table below shows the events which cause
transitions between modes. Entries in the table refer to the
list of events below. Blank entries indicate that the
corresponding transition is not allowed. In addition to the
modes listed, the system is always in *display* mode.

Exited Mode:

'idle*

*designate* 2 3 14

*designate* 5 6 7
AND *engage*

*engage* 8

Entered Mode: *idle* 'designate* #designate* *engage'
AND #engage*

Events causing transitions.

1. @T(/DESIG/) AND !desig valid!

2. @T(/CANCEL/) OR @T(NOT Idesig valid!)

3. 4,TC/ITL/) AMD (Imsls designated! > 1)

4. @T(/ITL/) AND (Imsls designated! z 1)

5. eT(/CANCEL/)

6. @T( Imsl s inflight I 0)

7. @TC/ITL/) AND (fImals designated! = ) OR
@T(NOT Idesig valid!)

8. @T(/CANCEL/) OR @T(Imsls iriflight! = 0)
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FUNCTION ppscRZZTia

Periodic Function Nine: update tracks for ownship movement

Modes in which function required: *display*

Initiation/Termination Events: @T(in mode)/@T(NOT(in mode))

Output Data Item: //TRACK1// . . //TRACK10//

Description: The position of each allocated track symbol is
periodically altered to compensate for ownship movement
since the previous correctior4 Because the incremental
movement is small, no adjustment of the correction for newly
entered tracks is applied.

Condition Table

MODES CONDITIONS

*display* Itrack allocated! X

//TRACKn// position = position - position unchanged
township movement!

Demand Function Name: hook track

Modes in which function required: *display*

Output Data Item: //HOOK//

Descriptior- The operator may hook a track by positioning
the cursor -close# to the track and depressing the ' hook'
button. This causes the hook symbol to be displayed
coincident with the track. The hook symbol is always
displayed and defaults to own ship position

Condition Table

MODES EVENTS

"display* @T(/HOOK/ = $on$) AND MT(in mode) OR
leorrelated! @T(/DPTRK/ = $on$)

f/HOOK// position = position of position = position of
!correlated track! //TRACKO//
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Demand Function Name: display hooked track info

Nodes in which function required: all

Output Data Item: //HRAWJE// ,//HBRG// ,//HPACQ//

Description: bearing and range are displayed for the booked
track in all modes, Pacq is displayed in *designate' mode

Event Table

MDDESCOtIDITIONS

'*display* CT(/HOOK/ =*on$) AND X
I correlated!

Odesig* x @T(/HOOK/ = $on$) AND
1correlatedt

//HRANGE// !range of hooked track! frange of hooked track!

f/HBRG/I Ibrg of hooked track! !brg of hooked track!

//HPACQ// not displayed !pacq of hooked tracki
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DICTINARY

Icuel response to menu selection - cue light remains
on until associated entry action complete

Icorrelatedl distance from cursor position to closest
track less than (ThD)/range scale

Icorrelated track track closest to cursor position when
Icorrelated! true.

Idesig validl indicates that a designation is valid, ie:
(//HRANGE// >= Iharpoon minimuz. rangel) AND
(//HRANGE// >= !harpoon maximum rangel)

Iflash! response to menu selection - cue light flashes
for ?? ms. NB: not required if VAB buttons
provide tactile feedback

Imsls designated! number of missiles selected - number of
missiles fired since entering *designate*
mode

Imsls inflightl number of missiles fired - number of missiles
attacked since entering 'engage* mode

!selectll response to menu selection - cue light of most
recently selected menu item remains on

!selectnI response to menu selection - cue light of
each selected menu item remains on
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